22 The Existence of Parallel Lines

The concept of parallel lines has led to both the most fruitful and the most frustrating developments in plane geometry. Euclid (c. 330-275 B.C.E.) defined two segments to be parallel if no matter how far they are extended in both directions, they never meet.

The history of the parallel postulate is fascinating. In fact, many mathematicians attempted to prove the Fifth Postulate, and some thought they had succeeded.

We shall see in this chapter that the axioms which we have adopted so far (and which are a refinement of those of Euclid) are sufficient only for proving the existence of parallel lines, but not the uniqueness.
Definition. (transversal). Given three distinct lines ℓ, ℓ_{1}, and ℓ_{2}, we say that ℓ is a transversal of ℓ_{1} and ℓ_{2} if ℓ intersects both ℓ_{1} and ℓ_{2}, but in different points.

Definition. (alternate interior angles, corresponding angles). Assume that the line $\overleftrightarrow{G H}$ is transversal to $\overleftrightarrow{A C}$ and $\overleftrightarrow{D F}$ in a metric geometry and that $\overleftrightarrow{A C} \cap \overleftrightarrow{G H}=\{B\}$ and $\overleftrightarrow{D F} \cap \overleftrightarrow{G H}=\{E\}$. If the points A, B, C, D, E, F, G and H are situated in such a way that
(i) $A-B-C, D-E-F$, and $G-B-E-H$, and
(ii) A and D are on the same side of $\overleftrightarrow{G H}$ then $\measuredangle A B E$ and $\measuredangle F E B$ are a pair of alternate interior angles and $\measuredangle A B G$ and $\measuredangle D E B$ are a pair of corresponding angles.

Theorem. Let ℓ_{1} and ℓ_{2} be two lines in a neutral geometry. If there is a transversal ℓ of ℓ_{1} and ℓ_{2} with a pair of alternate interior angles congruent then there is a line ℓ^{\prime} which is perpendicular to both ℓ_{1} and ℓ_{2}.

1. Prove the above Theorem.
[Th 7.1.1, p171]
Theorem. In a neutral geometry, if ℓ_{1} and ℓ_{2} have a common perpendicular, then ℓ_{1} is parallel to ℓ_{2}. In particular, if there is a transversal to ℓ_{1} and ℓ_{2} with alternate interior angles congruent, then $\ell_{1} \| \ell_{2}$.
2. Prove the above Theorem. [Th 7.1.2, p172]

By above theorem, if ℓ_{1} and ℓ_{2} have a common perpendicular then $\ell_{1} \| \ell_{2}$. Is the converse true: If $\ell_{1} \| \ell_{2}$, do ℓ_{1} and ℓ_{2} have a common perpendicular?
3. In the Poincaré Plane let $\ell={ }_{0} L$ and $\ell^{\prime}={ }_{1} L_{1}$. Show that $\ell \| \ell^{\prime}$ but that there is no line perpendicular to both ℓ and ℓ^{\prime}. [Ex 7.1.3, p173]

Theorem. In a neutral geometry, let ℓ be a line and $P \notin \ell$. Then there is a line ℓ^{\prime} through P which is parallel to ℓ.
4. Prove the above Theorem.
[Th 7.1.4, p173]
5. Show that in the Poincaré Plane there is more than one line through $P(3,4)$ which is parallel to ${ }_{-5} L$.
[Ex 7.1.5, p174]
Definition. (Euclid's Fifth Postulate (EFP)) A protractor geometr satisfies Euclid's Fifth Postulate (EFP) if whenever $\overleftrightarrow{B C}$ is a transversal of $\overleftrightarrow{D C}$ and $\overleftrightarrow{A B}$ with
(i) A and D on the same side of $\overleftrightarrow{B C}$
(ii) $m(\measuredangle A B C)+m(\measuredangle B C D)<180$

then $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at a point E on the same side of $\overleftrightarrow{B C}$ as A and D.

Theorem. If ℓ is a line and $P \notin \ell$ in a neutral geometry which satisfies EFP, then there exists a unique line ℓ^{\prime} through P which is parallel to ℓ.
6. Prove the above Theorem.
[Th 7.1.6, p175]
Definition. (Euclidean Parallel Property (EPP)) An incidence geometry satisfies the Euclidean Parallel Property (EPP) if for every line ℓ and every point P, there is a unique line through P which is parallel to ℓ.

Note that EPP is a property of an incidence geometry so that the Taxicab Plane, Euclidean Plane, and \mathbb{R}^{2} with the max distance all satisfy EPP because they all have the same underlying incidence geometry, and it satisfies EPP. Of course, only the second is a neutral geometry.

Theorem. If a neutral geometry satisfies EPP then it also satisfies EFP.
7. Prove the above Theorem. [Th 7.1.7, p176]
8. In a neutral geometry if $\measuredangle A B C$ is acute then the foot of the perpendicular from A to $\overleftrightarrow{B C}$ is an element of $\operatorname{int}(\overrightarrow{B C})$.
9. Given two lines and a transversal in a protractor geometry, prove that a pair of alternate interior angles are congruent if and only if a pair of corresponding angles are congruent.

23 Saccheri Quadrilaterals

In 1733 there appeared the book Euclid Vindicated of All Flaw by the Jesuit priest Gerolamo Saccheri. In it the author purported to prove Euclid's Fifth Postulate as a theorem. We now recognize basic flaws in his argument at certain crucial steps. However, the book was and is important in the development of the theory of parallels because it was the first to investigate the consequences of assuming the negation of Euclid's Fifth Postulate.

Despite his failure to actually prove Euclid's Postulate as a theorem, Saccheri did contribute a substantial body of correct results. Did he know about the flaws in his proof? Certainly the erroneous proofs were unlike any of the rest of his carefully reasoned development. It has been suggested that Saccheri knew what he did was fallacious and that the "proof" was included so that the Church would approve the publication of his work.

Definition. (Saccheri quadrilateral, lower base, upper base, lower base angles, upper base
angles) A quadrilateral $\square A B C D$ in a protractor geometry is a Saccheri quadrilateral if $\measuredangle A$ and $\measuredangle D$ are right angles and $\overline{A B} \cong \overline{C D}$. In this case we write $\Omega A B C D$. The lower base of $\Omega A B C D$ is $\overline{A D}$, the upper base is $\overline{B C}$, the legs are $\overline{A B}$ and $\overline{C D}$, the lower base angles are $\measuredangle A$ and $\measuredangle D$, and the upper base angles are $\measuredangle B$ and $\measuredangle C$.

The basic approach of Saccheri (and those who followed him) was to try to prove something which turned out not to be true: that every Saccheri quadrilateral was actually a rectangle. If that were true it would not be hard to prove that EPP holds.
Theorem. In a neutral geometry a Saccheri quadrilateral $s A B C D$ is a convex quadrilateral.
Definition. (congruent convex quadrilaterals)
10. In a neutral geometry, if ℓ is a transversal of ℓ_{1} and ℓ_{2} with a pair corresponding angles congruent, prove that $\ell_{1} \| \ell_{2}$.
11. In a neutral geometry, if $\overleftrightarrow{B C}$ is a common perpendicular of $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, prove that if ℓ is a transversal of $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ that contains the midpoint of $\overline{B C}$ then a pair of alternate interior angles for ℓ are congruent.
geometry are congruent if the corresponding sides and angles are congruent. In this case we write $\Omega A B C D \cong \Omega E F G H$.
Theorem. In a neutral geometry, if $\overline{A D} \cong \overline{P S}$ and $\overline{A B}=\overline{P Q}$, then $\Omega A B C D \cong \Omega P Q R S$.
Corollary In a neutral geometry if $\triangle A B C D$ is a Saccheri quadrilateral then $\Omega A B C D \cong \Omega D C B A$ and $\measuredangle B \cong \measuredangle C$.
Theorem. (Polygon Inequality). Suppose $n>3$. If $P_{1}, P_{2}, \ldots, P_{n}$, are points in a neutral geometry then

$$
d\left(P_{1}, P_{n}\right) \leq d\left(P_{1}, P_{2}\right)+d\left(P_{2}, P_{3}\right)+\ldots+d\left(P_{n-1}, P_{n}\right) .
$$

Theorem. In a neutral geometry, given $\bar{\triangle} A B C D$, then $\overline{B C}>\overline{A D}$.

Theorem. In a neutral geometry, given © $A B C D$, then $\measuredangle A B D \leq \measuredangle B D C$.

Theorem. In a neutral geometry the sum of the measures of the acute angles of a right triangle is less than or equal to 90 .
Theorem. (Sacchcri's Theorem). In a neutral geometry, the sum of the measures of the angles of a triangle is less than or equal to 180 .

It must be remembered that above theorem is the best possible result. We have already seen an example of a triangle in \mathcal{H} in which the sum of the measures of the angles is actually strictly less than 180. In your high school geometry course you learned that the sum of the measures of the angles of a triangle was exactly 180. That result was correct because you were dealing exclusively with a geometry which satisfied EPP.
...for the rest of results and lots of interesting problems, see the lectures and the given book, pages 178-187...

Two convex quadrilaterals in a protractor
(\#) Uneutraluoj geometriji ako je $4 A B C$ ořtar ugao pokazati da je tada podnoz̄je okomice iz tacke A na praru $p(B, C)=\overleftrightarrow{B C}$ element int $(\overrightarrow{B C})$.
R_{j}.
Oznaïre sa A_{1} tacku nu $\overleftrightarrow{B C}$ tako der je $A A_{1} \perp \overleftrightarrow{B C}$ Zu tacku A_{1} je moguć jedan od rledecia tri slucaja

$$
\begin{aligned}
& 1^{\circ} A_{1}-B-C \\
& 2^{\circ} A_{1}=B \\
& 3^{\circ} A_{1} \in \operatorname{int}(\overrightarrow{B C})
\end{aligned}
$$

Pokażimo da sluiajevi 1^{0}; 2^{0} nisu mogucí.
Ako bi bio prri sluiaj, primpetimo de je tadu $\triangle A A_{1} B$ pravouyli trouyas sa pravim uylom $\nleftarrow A A_{1} B$. S druge straue $\Varangle A B C$ je vanjski uyao $\triangle A A_{1} B ;$ rijedi $\quad \triangle A B C \triangle \nexists A, B$ \#kontruditciji (\ddagger ABC, e aiber ugao)
Da nije mogui drugi slucaj artarlano ZA VJEEZQU
Prena bome mova ruijediti da je $A_{1} \in$ int $(\overrightarrow{B C})$ gend
(\#) Date su duije prave i transterzala u protractor geometriji. Potazati da je par naizupenicu; unutrarkill uplora podudaran ako i samo ato je par saylasuil uylova podudaran.
R_{j}
"" Pretpostanimo da je par saylasnih uylora podudaran. Uredims oznale kas na
 slici $(A-B-C, D-E-F, G-B-E-H$, A, D su sa iste strane prave $\overparen{R E}$). Prence pretpostanci $\forall A B G \cong \mp D E B$. Oznacimo ujen ovih uylona sa λ.
Primejetino da uylou $\Varangle A B G i \quad \Varangle B E$ formina linearan par. Prena teorenen linearnoy para inamo da su ova dua uyla suplementama tj. $m(\nvdash A B E)=180-\lambda$.
Slicno inamo zer uylare $¥ D E B ; ~ \Varangle B E F$, Oni su ruphonentarni po je $m(\Varangle B E F)=180-\lambda \quad \cdots(2)$
(1) i (2) $\Rightarrow \quad \Varangle A B E \cong K F E B$
" par naizm, enicuih unutrajujib aylom je poduderan q.e.d.
$\Rightarrow "$ Pretpostavimo da je par naizmpenicuih unułrarujih uylova podudaran i pokuzimo da ie terde par saglasui 4 uylora podudaran. ZAVRSITI ZA VJEZZBO
(\#) U neutraluoj geometriji, ato e l trausferzala pravih l_{1} i l_{2} sa podudarnim parom saglasuih uylora, dokazati da je tada $l_{1} \| l_{2}$.
k_{j}.

Uredines oznake kao na slici ($A-B-C, D-E-F, G-B-E-H$ i $A_{i} D$ su sa iste strane prave l) Prena pletpartavei $\Varangle G B C \cong Y B E F$ reyere ouih uylona oznacimo sa λ)

Pètpostouimo de su $Y G B C ;$ \&BEF ortri uylovi i neka je M sredina duzi $\overline{B E}$. Kako su uyloni $\Varangle A B C i, 4 G B C$ unakrsui to je $m(\Varangle A B M)=\lambda$. Oznaiimo sa P i Q rerom okomice iz tacke. M na prave $l_{1} i l_{2}$. Sobzinom da Su $\Varangle A B M$ i $\triangle F E M$ ortui to su $D ; A$ sa iste strane prave l, a $F i Q$ su iste strane prave l. Time su backe
 P i Q sa razlicitich stuana prave l (zASTO?)
Zelimo pokazerfi da su tacke P, Mi Q kolinearne. Kulo e e

$$
\left.\begin{array}{cc}
\triangle M E Q \cong \angle M B P \\
\Psi E Q M \pm 4 B P M \\
M E \subseteq \overline{M B}
\end{array}\right\} \begin{array}{cc}
\text { UUS } \\
\Rightarrow & \triangle M B P \cong \triangle M E Q \\
& \forall B M P \cong \triangle E M Q
\end{array}
$$

Neka je $R \in \overrightarrow{P M}$ t.d. $P-M-R$. Prena teonemn vertikuluog ayla $\Varangle B M P \cong \triangle E M R$. Tine ie $\Varangle E M Q \cong E M R$. Tacke Q i R ru

Sa isbe strane prave $\overleftrightarrow{G H}=l \quad(Z A S T O ?)$
Prena teoremn koustukciji uyla $\Varangle E M Q=\Varangle E M R$.
Prena bome $Q \in \operatorname{int}(\overrightarrow{M R}) \subseteq \stackrel{\leftrightarrow}{P M}$ pa su $P, M i Q$ kolineame.
Time suos dobili de je prava $\stackrel{P}{P}$ obomita na $l_{1} i l_{2}$.

Sad pretpostavino du je $l_{1} \cap l_{2}=\{R\}$

Tada $P \neq R, Q \neq R i P, Q i R$ su nekolinearne. At tada $\triangle P Q R$ ina dra prava uyla, ste nije moguice.
Prena tone $l_{1} 1 l_{2}=\phi$ a tive $l_{1} l_{2}$

$$
g-e d
$$

(\#) Uneutraluoj geometriji, ako je $\overleftrightarrow{B C}$ zajeduicka normala na $\overleftrightarrow{A B} i \overleftrightarrow{C D}$, dokazati da ato je l transferzala pravih $\overleftrightarrow{A B}$ i $\overleftrightarrow{C D}$ Kga sadrz̈i sredinu dṻzi $\overline{B C}$ tade je par naizuye. nic̈n, unutrasuijh uylora za pravu l podudaran.
R_{j}.

Sredinu dṻi $\overline{B C}$ oznaimo sa M, a presječue taike prave l sa pravima $\overleftrightarrow{A B}$; $\overleftrightarrow{C D}$ oznaìimo redom Sa P i Q.
Kako su $\Varangle P M B ; \Varangle Q M C$ unakrsui uglori bo je

$$
\Varangle P M B \cong \measuredangle Q M C
$$

Sad inamo

$$
\begin{aligned}
& \Varangle P M B \cong \Varangle Q M C \quad \text { USU } \\
& \left.\begin{array}{c}
\overline{M B} \cong \overline{M C} \\
\triangle M B P \cong \Varangle M C Q
\end{array}\right\} \\
& \Rightarrow \quad \triangle P M B \cong \triangle Q M C \\
& \text { V } \\
& \Varangle B P M \cong \Varangle C Q M \\
& \text { g.e.d. }
\end{aligned}
$$

